如果数a能被数b整除,a就叫做b的倍数,b就叫做作a的约数.约数和倍数都表示一个数与另一个数的关系,不能单独存在.如只能说16是某数的倍数,2是某数的约数,而不能孤立地说16是倍数,2是约数. “倍”与“倍数”是不同的两个概念,“倍”是指两个数相除的商,它可以是整数 小数或者分数.“倍数”只是在数的整除范围内,相对于“约数”而言的一个数字概念,表示的是能被某一个自然数整除的数,它必须是一个自然数. 几个自然数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数.例如12,16的公约数有1,2,4,其中最大的一个是4,4是12与16的最大公约数,一般记为(12,16)=4.12,15,18的最大公约数是3,记为(12,15,18)=3. 常用的求最大公约数的方法是分解质因数法和短除法. 分解质因数法,把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数.例如,求24和60的最大公约数.24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2,2和3,它们的积是2×2×3=12,所以(24,60)=12. 短除法,先用这几个数的公约数连续去除,一直除到所有的商互质为...
内容已隐藏,请关注公众号输入验证码查看
本帖支持关注公众号查看
【无套路 无套路 无套路 扫描二维码关注公众号发送【验证码】收到验证码 在上面输入点击提交查看即可显示隐藏内容】
|